Some effects of water bodies on the n environment – numerical experiments

نویسنده

  • Günter Gross
چکیده

A three-dimensional micro-scale model was used to study some aspects of water bodies on the urban environment. This is of special importance in the field of urban climate, where ways and means to reduce the heat load produced by city residents need to be found. In a systematic study, the ranges and impacts for different sizes of water bodies were estimated and a fitted relation was given. Water temperature, and the resulting temperature contrast with the surrounding area, seems to be more important during nighttime than during the day. The relevance of meteorological and morphological parameters on water surface temperature was studied by adding a water model to an existing numerical framework. The coupled model system was tested against field observations. Beside external radiation forcing, wind speed and depth of the water body were identified as the most relevant parameters. In a numerical study for a realistic urban environment the different impacts of water bodies during day and night were demonstrated, and the range of the penetration of the water effect into the built-up area was estimated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of Saline Gravity Currents Using EARSM and Buoyant k- Turbulence Closures

Gravity currents are very common in nature and may appear in rivers, lakes, oceans, and the atmosphere. They are produced by the buoyant forces interacting between fluids of different densities and may introduce sediments and pollutants into water bodies. In this study, the hydrodynamics and propagation of gravity currents are investigated using WISE (Width Integrated Stratified Environments), ...

متن کامل

Numerical Simulation of Partial Cavitation over Axisymmetric Bodies: VOF Method vs. Potential Flow Theory

A computational study of partial cavitation over axisymmetric bodies is presented using two numerical methods. The first method is based on the VOF technique where transient 2D Navier-Stokes equations are solved along with an equation to track the cavity interface. Next, the steady boundary element method (BEM) based on potential flow theory is presented. The results of the two methods for a di...

متن کامل

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

A numerical study of supercritical water oxidation of phenol

Supercritical water oxidation has attracted attention of many researchers ever since the ideahas emerged about three decades ago as a promising technique in the waste managementindustry. Providing more details about the behavior of a supercritical water oxidation systemunder various operating conditions and extending available data can greatly assist more accurateand reliable design of such sys...

متن کامل

Wave Evolution in Water Bodies using Turbulent MPS Simulation

Moving Particle Semi-implicit (MPS) which is a meshless and full Lagrangian method is employed to simulate nonlinear hydrodynamic behavior in a wide variety of engineering application including free surface water waves. In the present study, a numerical particle-based model is developed by the authors using MPS method to simulate different wave problems in the coastal waters. In this model flui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017